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In situmycorrhizal function –
knowledge gaps and future
directions

Summary

We know a lot about the potential functions of mycorrhizas, but

whether or not these are realized in the field where plants

simultaneously experience a range of biotic interactions and

fluctuating abiotic conditions is more or less unknown. In this

Viewpoint, wepresent findings froma literature survey of papers on

mycorrhizal function published in New Phytologist during the past

30 years. This survey showed that most functional studies are still

conducted under controlled conditions, target mostly arbuscular

and ectomycorrhizas, and focus on nutrient and carbon dynamics of

the symbiosis. We also share discussions from a workshop, ‘In situ

mycorrhizal function: how do we get relevant data from a messy

world?’, held at the 9th International Conference on Mycorrhiza

(ICOM9) in August 2017. In this workshop, we examined possibil-

ities and limitations of old andnew techniques for field research, and

participants expressed the need to learn more about fungal traits

and how they may relate to function. We argue that moving

mycorrhizal experiments into the field will allow us not only to

quantify realized functions, but also to revisit old paradigms and

possibly discover new functions.

Background

Since research on mycorrhizas began, we have learned a great deal
about the taxonomic identity and richness of the symbiotic
partners, as well as their form and potential function (Smith &
Read, 2008). Most functional studies have targeted nutritional
benefits to the host of the symbioses, and groundbreaking work has
shown that fungal symbionts can provide the majority of nutrients
required by plants (Smith et al., 2003) and access to nutrient
sources that are otherwise unavailable to them (Read & Perez-
Moreno, 2003). Persistent debates remain about functional
diversity and complementarity, evolution and selection of func-
tion, and host–fungus interactions operating along the mutualism
to parasitism continuum to name a few. The most striking gap in
our opinion, however, is the weak knowledge of the functional
properties of mycorrhizas in field settings. In this Viewpoint, we
highlight the current state of research on mycorrhizal function,
identify obstacles to field research, and outline critical questions

and approaches we believe can move the field beyond potential to
realized mycorrhizal function. These ideas are partly based on
outcomes of the workshop, ‘In situ mycorrhizal function: how do
we get relevant data from a messy world?’ that we held at the 9th

International Conference on Mycorrhiza (ICOM9) in August
2017. Moving mycorrhizal research into the field involves many
challenges, but will allow us not only to quantify realized functions,
but to revisit and examine old paradigms, and potentially discover
new functions.

Current state of research on mycorrhizal function

Toget a better idea of the nature of functionalmycorrhizal research,
we searchedWeb of Science onOctober 15, 2017, using the option
‘All Databases’ and the search terms ‘Mycorrhiza* and function’
restricted to New Phytologist papers published between 1987 and
2017.We chose to focus onNew Phytologist publications due to the
journal’s long history of publishing high-quality, mechanistic
mycorrhizal research. This returned 212 publications, but 145 of
those were rejected because they were reviews, commentaries, or
clearly addressed a separate topic. For the remaining 67 papers, we
collected information regarding mycorrhizal type studied, the
function targeted, whether individual fungi or communities were
included, how the symbiosis wasmanipulated, whatmeasurements
were collected, and whether the study was conducted in the
greenhouse, field or involved axenic cultures (see Supporting
Information Table S1 for specific papers included and information
extracted, and Table S2 for a summary). This was by no means
meant to be exhaustive, and there clearly are well-known functional
papers that were excluded because they were published elsewhere or
were not targeted by our search terms.However, we argue that these
publications include a relevant subset of high-quality mycorrhizal
studies published during the past 30 years that illustrate specific
functions and symbioses researched, as well as approaches chosen.

Not surprisingly, most studies targeted ectomycorrhiza (EM,
48%) and arbuscular mycorrhiza (AM, 48%) while ericoid and
orchid mycorrhizas were the focus in < 5% of studies. Likewise,
nutrient (67%) and carbon (40%) movements were the main
functions assessed, whereas other functions, such as water relations
(7%) and pathogen protection (1%) were rarely studied. This is
particularly interesting given the recent Delavaux et al. (2017)
meta-analysis showing that services other than nutrient acquisition
can be equally important in AM, and results by Bennett et al.
(2017) highlighting the central role of pathogen protection by EM
fungi.Mycorrhizas weremost oftenmanipulated using inoculation
(46%), whereas ingrowth cores (10%) and fungicides (4%) were
less utilized. The use of genetic manipulation (e.g. knock out or
expression systems) to reveal function was restricted to EM in these
publications (14%), although plant mutants have been very
informative in AM research published elsewhere (e.g. Barker
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et al., 1998; Javot et al., 2007). Some experiments (31%) relied on
other manipulations, such as CO2 enrichments or nutrient
amendments, which indirectly manipulated mycorrhizal fungal
abundance or composition, and thus limited assessments of
mycorrhizal function to correlation analyses between mycorrhizal
responses and other variables measured.

Most studies measured biomass responses by both plants and
fungi (Fig. 1; Table S1).While biomass represents the consequence
of the sum of all functions, it provides limited information about
the underlying mechanism(s) unless paired with specific treat-
ments, such as nutrient additions or water manipulations. Also,
biomass may not be a good measure of fitness (Varga & Kyt€oviita,
2010), especially when extrapolated from short-term greenhouse
experiments. To understand mechanistic relationships, it is
essential to distinguish between themeasurement of actual function
and various proxies of function. This applies to other variables as
well. For instance, genomic studies need to be combined with host
or fungal mutants or other experimental approaches to verify
actual, not just potential, function. Likewise, solely quantifying
differences in enzymatic activity between mycorrhizal and non-
mycorrhizal treatments may have limited value unless it is
combined with some measure of how shifts in activity influence
either plant or fungus.

The most striking finding from the literature survey, however,
was that – despite pleas by other researchers more than 20 years
ago (Read, 1991; Johnson et al., 1997) – we are still primarily
conducting experiments in controlled environments, not in the
field. Of the 67 studies we surveyed, only three experimentally

manipulated mycorrhizal abundance in the field. These studies
used rotating soil cores (Johnson et al., 2001) or transplanted
seedlings of varying AM colonization (McGonigle & Fitter, 1988)
to quantify the role of AM fungi for P acquisition, or applied
fungicides to assess the role of ericoid mycorrhizal fungi in heath
(Michelsen et al., 1999). None of these are recent publications,
which highlights the fact that while methods to manipulate
mycorrhizal fungal abundances in the field are available, their use
continues to be limited.

What are the barriers to field research?

The keywords ‘Experiment’ and ‘Greenhouse/chamber’ were
positively correlated and opposite to ‘field’ and ‘survey’ when
relationships among the 67 New Phytologist publications were
assessed (Fig. 1; Table S1). In other words, we tend to conduct
experiments under controlled conditions, and surveys in the field.
Surveys can be powerful tools to understand relationships between
mycorrhizas and various processes (e.g. Read, 1991; Cheeke et al.,
2017), but in order to quantify function, we need to experimentally
manipulate the symbiosis. This is often quite challenging to do in
the field. Inoculating larger areas can be costly and impractical and
relies on low natural abundances of fungi, fungicides reduce the
abundance of all fungi, which complicate interpretations, and
rotating soil cores take a lot of maintenance to be effective. In
addition to technological challenges associated with field experi-
ments, conditions are harder to control in the field than in the
greenhouse, and plants and fungi are sometimes exposed to

Fig. 1 Principal component analysis (PCA)
biplot implemented in the VEGAN package of R,
using the data in Supporting Information
Table S1, excluding uninformative variables
occurring 10 times or fewer. Gray points
represent each paper, and arrows the strength
of the variable. For visual clarity, some
variables have been renamed: A, other
manipulations; B, nutrient dynamics; C, plant
nutrient concentration; AM, arbuscular
mycorrhiza; EM, ectomycorrhiza.
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multiple biotic interactions and varying abiotic conditions that can
reduce the likelihood of significant responses. The logistical issues
inherent in field research are compounded by the fact that access to
existing long-term field experiments and the creation of new ones
are sometimes challenging. This dissuades many researchers,
especially early career scientists, from embarking on field experi-
ments. Joining global research collaborations, such as Nutrient
Network (www.nutnet.umt.edu), or conducting add-on studies in
established Long Term Experimental Research (LTER) sites
(https://lternet.edu) may be ways to circumvent obstacles and
reduce cost, save time and minimize risks associated with field
experiments.

Our visualization of the papers illustrated another potential
barrier to progress and paradigm shifts in mycorrhizal research. In
Fig. 1, AM and EM were clearly separated from each other, and so
weremany of themethods used, indicating that different symbioses
are often researched in isolation using a specific set of tools. While
this may be appropriate in cases where one symbiosis dominates,
recent papers highlight how much we can learn from comparing
symbioses using the same methodology (Bennett et al., 2017;
Cheeke et al., 2017). This is not only an issue across symbioses, but
also applies to different disciplineswithin a symbiosis. For example,
many fungal community surveys implicitly assume that observed
shifts have functional consequences, whereas studies assessing
function often research responses using selected fungal isolates or
undefined mixed inocula that lack obvious links to field systems
(Table S1). Based on this, it was encouraging to see the increased
crosstalk across disciplines at ICOM9 (Waller et al., 2018), which
we hope will reduce real or perceived divisions, enable transfer of
methodology and expertise, and result in novel and creative ways of
answering research questions.

What can we learn from field research and what are
feasible approaches?

The field of evolution probably offers the best example of the
importance of studying organisms in their natural environments.
For example, how would we make sense of the shift in melanism in
peppered moths were it not for the observation of concomitant
changes in soot pollution combined with controlled predation
experiments (summarized in Cook et al., 2012)?

What are the unanswered questions in terms of mycorrhizal
function, and howwould our perception of the symbiosis change if
wewere better able to capture function in the field? Aremycorrhizal
fungi parasitic in nature and if so, to what extent, under what
conditions and for what duration? Participants at the ICOM9
workshop were asked to identify unanswered questions related to
mycorrhizal function, and we captured responses as word clouds
(Fig. 2a). The key knowledge gaps centered around mycelial traits,
highlighting how the fungal mycelium remains a critically
important but poorly understood component of the symbioses
that we rarely measure (Fig. 2a). Mycelial growth and colonization
patterns differ among fungal taxa, both within AM and EM
(Agerer, 2001; Hart & Reader, 2002; Koide et al., 2007, and
references cited therein), and these differences may translate into
different functions (Courty et al., 2005; Maherali & Klironomos,

2007). For example, AM fungi that predominately colonize inside
the root may be better pathogen protectors than those that grow an
extensive extraradical mycelium, which aids in nutrient uptake
(Maherali & Klironomos, 2007). The former group appears to
replace the latter as soil fertility increases, and this coincides with
less beneficial plant responses in greenhouse experiments (Johnson,
1993).While parasitic relationships are certainly possible (Johnson
et al., 1997), it is also conceivable thatAMfungi from fertilized soils
provide a different function, such as pathogen protection, which is
seldom assessed in greenhouse experiments. We could test this
along natural or imposed fertility gradients by combining genomic
approaches that target genes associated with nutrient uptake and
defense with treatments specifically designed to quantify nutrient
acquisition and pathogen protection by AM fungi. These studies
could be combined with fungal community analyses and manip-
ulations of fungal abundance and possibly reciprocal transplant
experiments (Johnson et al., 2010). While daunting, there is an

(a)

(b)

Fig. 2 Word cloud describing results from workshop participants answering
the question (a)what is themost importantmycorrhizal function to research,
and (b) how can this be done?
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urgent need to determine to what extent functions differ among
taxa across all symbioses, and which plant and fungal traits, if any,
predict these differences (Sikes et al., 2009). We also need to
quantify the relative importance of fungal abundance vs commu-
nity composition, and whether different functions and communi-
ties can be predicted based on biotic and abiotic conditions. If we
can make these predictions, then community analyses could finally
become a proxy for function, but we have a long way to go before
that is the case.

Linking functional traits and composition is challenging for
many reasons (van der Heijden & Scheublin, 2007), but studies
that have combined these approaches have been informative. For
example, Helgason et al. (2002) showed that the most abundant
isolate of AM fungus colonizingAcer pseudoplatanus in the field was
also the most beneficial when inoculated onto A. pseudoplatanus
under controlled conditions. This suggests that the nonrandom
distribution of AM fungi in that system is driven by selective carbon
allocation to the better mutualist (sensu Kiers et al., 2011) rather
than competitive interactions among fungi where the more
competitive fungus (that may also be the poorer mutualist, Bever
et al., 2009) wins. The Helgason et al. study also highlights the
benefit of combining surveys and controlled experiments. Other
examples of papers that have linked function and composition
include Walker et al. (2014), which measured enzyme activities of
individual EMroot tips coupledwithmolecular analyses to identify
the fungus involved, and Clemmensen et al. (2015), which
combined high throughput sequencing and observations of EM
fungal growth forms and decomposability to help explain shifts in
carbon and nitrogen sequestrations along a boreal chronosequence.
These studies are noteworthy because they not only quantified the
extent of functional differences among fungal species, but also
linked those differences to specific traits and distribution patterns.
These studies indicate that much can be learned about mycorrhizas
in field settings without having to manipulate fungal abundances
when this proves to be too challenging. Another approach that
requires no manipulations of fungal abundance is reciprocal
transplant experiments where local adaptation in the mycorrhizal
symbioses can be assessed (Johnson et al., 2010). Overall, in order
to better understand mycorrhizal function, we need to use a
consortia of methods and approaches, including surveys, reciprocal
transplants, and experiments that manipulate fungal abundances.

The utility of existing and emerging technologies

During the ICOM9workshop, we discussed current and emerging
technologies available to quantify mycorrhizal function in more
natural settings. Organizers and invited speakers highlighted ways
to manipulate mycorrhizal fungal abundances in the field using
fungicides and ingrowth cores (Ylva Lekberg), as well as the
potential use of mutants (Thomas Irving), radioactive isotopes
(Katie Field), enzymes (Bj€orn Lindahl), and quantum dots (Victor
Caldas), to study mycorrhizal function, nutrient transformation,
uptake and movement. Thorunn Helgason outlined the potential
use of genomic approaches, and Edith Hammer described a new
technology that mimics the complexity of soils to increase realism
in laboratory studies (Aleklett et al., 2018). Finally,GabyDeckmyn

reminded us all that in order to make full use of modeling, we need
to collect more and better metadata (particularly environmental)
during our surveys and experiments (Deckmyn et al., 2014).

Following these presentations, participants were asked what
methods to use to address unanswered questions regarding
mycorrhizal function highlighted earlier. Two themes emerged:
(1) the application, in the field, of techniques typically confined to
the laboratory, such as biomolecule analyses including various
-omics approaches (genomics, transcriptomics and proteomics),
and (2) the development of ways to capture the behavior of the
mycorrhizal symbiosis directly. Most commonly highlighted were
ways to image the symbiosis in the field and to develop and increase
the range of biomarkers used to trace function (Fig. 2b). This could
be done using cutting-edge technology, such as the ‘lab on a chip’
microfluidics and quantum dots (Aleklett et al., 2018), as well as
established methods, such as minirhizotrons (Hendrick & Pregit-
zer, 1996) and signature fatty acids (Olsson, 1999). The latter two
can be combined with carbon-isotopes to inform on carbon
allocation specifically to mycorrhizal fungi (Bending & Read,
1995; Olsson & Johnson, 2005).

Workshop participants also highlighted the potential use of
CRISPR (Clustered Regularly Interspaced Short Palindromic
Repeats) gene editing technology (Ran et al., 2013). Mutants have
provided invaluable insight into mycorrhizal functioning, and are
beneficial because they circumvent the necessity to remove
mycorrhizal fungi via fungicide applications or fumigations. The
utility of mutants was clearly shown recently using the rmc tomato
(Solanum lycopersicum L., Barker et al., 1998) in a California
drought experiment conducted in the field (Bowles et al., 2016).
However, the release of genetically modified organisms (GMOs)
that incorporate genetic information fromother organisms into the
field poses potential risks and is strictly regulated (if permitted at
all). The use of CRISPR has been raised as an alternative to GMOs
in field research given that no foreignmaterial is added, but there is
currently little consensus among countries regarding gene-editing
rules (Nature, 2017). As such, researchers should check specific
regulations in their country.

While it is tempting to wait for/rely on new technologies, many
of which were highlighted by workshop participants, existing ones
can help us answer important questions. For example, in 1982,
Chiarello et al. published a groundbreaking paper in Science that
tracked phosphorus-32 (32P) movements within a grassland,
possibly via arbuscular mycelial networks; and Simard et al. (1997)
used carbon-13 (13C) and carbon-14 (14C) to assess carbon
movements among trees in the field. Both studies stimulated
subsequent research on common mycorrhizal networks. More
recently, however, the use of radioactive isotopes has been largely
confined to very controlled conditions (e.g.Mikkelsen et al., 2008).
This is understandable given restrictions in many places against
radioactive isotopes (33P may have fewer restrictions given the
lower radioactivity), but it is unfortunate given that 32P and 33P
applied in hyphal ingrowth bags (Johnson et al., 2001) could
measure mycorrhizal phosphorus uptake in natural systems
(Jakobsen, 1994) so long as appropriate precautions are taken to
minimize risk. Combined with carbon isotopes (13C or 14C), we
could repeat elegant cost-benefit assessments conducted in the
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greenhouse more than two decades ago (Pearson & Jakobsen,
1993). Overall, the issue is not necessarily that we need new
methods, but that we apply available methods in the field wherever
possible.

Conclusions

Ernst Mayr said, ‘The history of science knows scores of instances
where an investigator was in possession of all the important facts
for a new theory, but simply failed to ask the right question’
(Mayr, 1982). Our workshop and literature survey revealed that
there are a suite of ‘typical’ approaches that we use to study
mycorrhizal function, most of them under controlled conditions,
and that there are significant barriers to conducting field research.
However, these obstacles are not insurmountable, and moving
mycorrhizal research into the field will allow us not only to
quantify realized functions, but also to revisit and examine old
paradigms and potentially discover new functions. Mycorrhizas
could have very important roles to play in the future, including
mitigating the decreasing reserves of phosphorous fertilizers, and
helping plants tolerate the increasing stress associated with more
severe droughts predicted with climate change. With creativity
and ambition, we can apply old and new tools to field systems,
and move into the next decade carrying out transformative
experiments that will begin, finally, to answer fundamental
questions about what mycorrhizas actually do, rather than simply
what they are capable of doing. Only then can we communicate
the possibilities and limitations associated with these symbioses to
people outside our field.
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  and Tansley insights.
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