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Summary

 

In addition to their well-recognized roles in plant nutrition and communities,
mycorrhizas can influence the key ecosystem process of soil aggregation. Here we
review the contribution of mycorrhizas, mostly focused on arbuscular mycorrhizal
fungi (AMF), to soil structure at various hierarchical levels: plant community;
individual root; and the soil mycelium. There are a suite of mechanisms by which
mycorrhizal fungi can influence soil aggregation at each of these various scales. By
extension of these mechanisms to the question of fungal diversity, it is recognized
that different species or communities of fungi can promote soil aggregation to
different degrees. We argue that soil aggregation should be included in a more
complete ‘multifunctional’ perspective of mycorrhizal ecology, and that in-depth
understanding of mycorrhizas/soil process relationships will require analyses empha-
sizing feedbacks between soil structure and mycorrhizas, rather than a uni-
directional approach simply addressing mycorrhizal effects on soils. We finish the
discussion by highlighting new tools, developments and foci that will probably be
crucial in further understanding mycorrhizal contributions to soil structure.
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I. Introduction

 

The study of the ecology of mycorrhizas has a long tradition,
with a historically heavy emphasis on the role of fungi in plant
physiology. More recently, the influence of mycorrhizal fungi
on plant communities has become an additional focus, and
perhaps the next wave of research will aim at quantifying the
contribution of these fungi to ecosystem processes (Rillig,
2004a). A salient function of mycorrhizal fungi at the
ecosystem scale is their contribution to soil structure (Fig. 1).

Soil structure refers to the three-dimensional arrangement
of organic/mineral complexes (aggregates) and pore spaces.
This parameter is often indirectly quantified as the size distri-
bution of aggregates or the stability of aggregates exposed to
standardized disintegrating forces (Díaz-Zorita 

 

et al

 

., 2002).
Aggregates are often operationally divided into different
microaggregate (< 250 µm) and macroaggregate (> 250 µm
diameter) size fractions. In many soils, where organic matter
serves as the main binding agent, aggregates are formed in a
hierarchical manner from primary particles and organic matter
(Tisdall & Oades, 1982).

As the basic setting in which processes in soils take place,
soil structure influences many biotic, physical and chemical
aspects of soils, reviewed previously (Díaz-Zorita 

 

et al

 

., 2002;
Six 

 

et al

 

., 2004). Most of these are recognized as immediately
relevant to the sustainability of agroecosystems. However, soil
aggregation is also important in nonagricultural ecosystems,
such as in the contexts of restoration of disturbed lands, erosion
prevention, global change, or soil carbon storage. It is crucial
to realize that soil aggregation may change significantly in
natural ecosystems on ecological time scales of a few growing
seasons, for example in response to global change factors (Rillig

 

et al

 

., 1999; Niklaus 

 

et al

 

., 2003).
Many physical, chemical and biological factors (and their

interactions) contribute to soil aggregation, yet among the

biological aspects, mycorrhizas are recognized as being of
special importance. In this article, we first provide a review of
the potential ways by which mycorrhizal fungi can influence
soil aggregation in ecosystems at different scales. Subsequent
discussion will be largely focused on one aspect of this influence,
namely the effects of the fungal mycelium itself, as substantial
progress has been made in this area not covered in previous
reviews on this general topic (e.g. Tisdall & Oades, 1982;
Tisdall, 1991; Miller & Jastrow, 2000; Rillig, 2004b).

Even though ectomycorrhizal fungi were considered along
with arbuscular mycorrhizal fungi (AMF) in earlier concep-
tual contributions (e.g. Tisdall & Oades, 1982), most recent
experimental work has focused on the role of AMF in soil
structure, and this bias in research is also, by necessity,
reflected in this review. However, many of the mechanisms
discussed will apply equally to ectomycorrhizas, and important
similarities, and some distinctions, between the two mycorrhizal
types are also discussed.

 

II. How mycorrhizal fungi can influence soil 
aggregation at various scales

 

A hierarchical perspective is often useful when contemplating
mycorrhizal influences on processes (O’Neill 

 

et al

 

., 1991;
Rillig, 2004a), and soil aggregation is no exception. Mycorrhizal
fungi can potentially influence soil aggregation at different
levels (Fig. 2), namely plant communities, plant roots
(individual host), and effects mediated by the fungal
mycelium itself. Different mechanisms are in operation at
each of these levels, and these are discussed in the following
sections. Even though separated for the sake of presentation,
it is important to bear in mind that these processes operate
concurrently and in a hierarchical manner.

Not only are mycorrhizal influences on soil aggregation
best discussed within a hierarchical framework, but the pro-
cess of soil aggregation itself is typically viewed in a hierarchical
manner (from primary particles to microaggregates and
macroaggregates). Following the hierarchical conceptual
model of Tisdall & Oades (1982), AMF and other fungi are
hypothesized to be important for soil aggregation at the
macroaggregate level, where direct hyphal involvement is
thought to be most pronounced. Although a number of studies
have examined the influence of AMF on macroaggregates
(e.g. Miller & Jastrow, 2000; Rillig 

 

et al

 

., 2002), much less
research has been devoted to the role of mycorrhizal fungi in
the formation of microaggregates. Most studies examining
microaggregate formation have focused on the importance of
particulate organic matter (Oades, 1984; Golchin 

 

et al

 

.,
1994; Angers 

 

et al

 

., 1997; Six 

 

et al

 

., 2002) and have largely
ignored potentially important mycorrhizal fungal influences
on the process. For example, mycorrhizal fungal mycelium
products would be expected to influence, directly and strongly,
aggregation at scales smaller than the macroaggregate,
although direct experimental evidence is sparse. Additionally,

Fig. 1 Photograph of cottonwood (Populus trichocarpa) roots from 
a riparian area in Montana, USA, showing ectomycorrhizal root tips, 
fungal mycelium and adhering soil particles.
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as microaggregates are thought to form most frequently
within macroaggregates, AMF-facilitated stabilization of
macroaggregates would be expected to result indirectly in
microaggregate formation. The aggregate size hierarchy, and
the potential for specific aggregate formation and stabilization
mechanisms (biochemical vs biophysical, for example) to act
concurrently, at different scales, and at different aggregate
formation and degradation stages, is central to the following
discussion.

 

1. Plant communities and primary production

 

Among the soil fungi, mycorrhizal fungi are prominent
through their well-established ability to affect the
composition of plant communities (e.g. Grime 

 

et al

 

., 1987;
van der Heijden 

 

et al

 

., 1998; Klironomos 

 

et al

 

., 2000), for
example through providing differential benefits to their
members. Plant species may differ in their effects on soil
aggregation, as demonstrated for agriculturally relevant plants
and agroecosystems (e.g. Angers & Caron, 1998), and plants
from natural communities (e.g. Eviner & Chapin, 2002;
Rillig 

 

et al

 

., 2002; Piotrowski 

 

et al

 

., 2004). As a consequence,
changes in plant community composition can translate into
effects on soil structure. Additionally, AMF and their diversity
have been shown to be important controllers of the produc-
tivity of plant communities (e.g. van der Heijden 

 

et al

 

., 1998),
in part via their effects on plant community composition. Net
primary production controls how much carbon may eventually
enter the soil, for example as litter or as root growth, and this
is, in turn, an important determinant of soil aggregation.

 

2. Plant roots: individual host level effects

 

Processes affecting soil structure that are mediated by roots
can be grouped into five categories (for detailed discussion see
Six 

 

et al

 

., 2004): (1) root physical force/penetration; (2) soil
water regime alteration; (3) rhizodeposition; (4) root
decomposition; and (5) root entanglement of soil particles. By
virtue of their influence on plant biomass (or root : shoot
ratios), mycorrhizal fungi can influence each of these root
processes. In this section, we focus on how mycorrhizal
colonization can influence these five aspects and, through
them, soil aggregation, irrespective of the effects on root
biomass. Many factors will strongly interact synergistically
(e.g. rhizodeposition fueling microbial activity, root entang-
lement providing a physical net, and localized drying
increasing contact between particles), and in practice these
factors will be difficult to separate experimentally.

 

Root entanglement and physical force/penetration

 

Root mor-
phology and architecture (e.g. degree of branching,
thickness of roots, etc.) influence each of these five
mechanisms, perhaps particularly strongly through root
entanglement and exertion of physical force. Ectomycorrhizal
fungi generally invoke extensive change in root architecture
through the formation of a root-tip enveloping mantle (Smith
& Read, 1997), hence architectural influences are particularly
obvious in this case. The net effect for soil aggregation has not
been studied to our knowledge (i.e. is the loss of root surface
area inconsequential in view of mycelium proliferation?).
That infection with arbuscular mycorrhizas (AM) can result

Fig. 2 Conceptual overview of the three main 
different scales (plant community, individual 
plant, and mycelium) at which mycorrhizal 
fungi can influence soil aggregation, as 
discussed in this article. Also given is a 
summary of the main parameters to be 
considered at each level. (NPP, net primary 
production.)
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in root morphological changes, albeit comparatively
more subtle ones, is known (e.g. Berta 

 

et al

 

., 1993) and is
the subject of ongoing research to determine both the
mechanisms involved and the consequences for plant and
ecosystem function (e.g. Berta 

 

et al

 

., 2002; Gamalero 

 

et al

 

.,
2002; Oláh 

 

et al

 

., 2005). Roots can create compressive and
shear stresses that may reach 2 MPa (Goss, 1991), thus
resulting in localized soil compression (Dexter, 1987) and
reorientation of clay particles along root surfaces (Dorioz

 

et al

 

., 1993). Localized soil compression serves to eliminate
spatial constraints on microaggregate formation (Six 

 

et al

 

.,
2004). Differences in root architecture also determine the
overall influence of root penetration (Carter 

 

et al

 

., 1994) and
root entanglement (Tisdall & Oades, 1982; Miller & Jastrow,
1990).

 

Changed soil water regime

 

Soil structure is influenced by
soil water content and its variation with time, and plant
growth can strongly influence the magnitude and frequency
of wetting and drying cycles. Decreased water content
typically increases contact points between primary particles
and organic matter, resulting in increased soil cohesion and
strength (e.g. Horn & Dexter, 1989; Horn 

 

et al

 

., 1994).
Localized drying of soil, in close proximity to roots, promotes
binding between root exudates and clay particles (Reid &
Goss, 1982), directly facilitating microaggregate formation.
Not only can mycorrhizal fungi influence plant growth overall
(and hence soil water regimes), but mycorrhizal plants exhibit
different water relations from their nonmycorrhizal
counterparts (Augé, 2001, 2004). For example, higher
stomatal conductance and transpiration can occur in the
mycorrhizal situation (Ebel 

 

et al

 

., 1997; Augé 

 

et al

 

., 2004).
More efficient exploration of water by mycorrhizal fungi may
lead to more extreme wet/dry cycles, which could have very
strong consequences for soil aggregation (see Six 

 

et al

 

., 2004).
Additionally, because the symbiosis can allow leaves to fix
more carbon during water stress (Duan 

 

et al

 

., 1996), carbon
inputs into the soil would be expected to be increased, which
might be especially important in more arid environments.

 

Rhizodeposition

 

Rhizodeposition – the release of com-
pounds from living roots – can be strongly influenced by
mycorrhizal fungi ( Jones 

 

et al

 

., 2004), because these fungi can
affect plant carbon metabolism (e.g. Douds 

 

et al

 

., 2000),
while representing a sizeable sink for plant-derived carbon. In
addition to quantitative changes, qualitative shifts in
rhizodeposits have also been documented (reviewed in Jones

 

et al

 

., 2004). Root exudates provide much of the carbon
known to stimulate the formation of aggregates; for example,
root mucilages can stick particles together, leading to the
short-term stabilization of aggregates (Morel 

 

et al

 

., 1991).
Additionally, rhizodeposited carbon can fuel microbial
activity (giving rise to the rhizosphere), which in turn
contributes largely to aggregate formation.

 

Root decomposition

 

Through the delivery of organic
material, the decomposition of roots also contributes to soil
aggregation. Mycorrhizal colonization, in addition to altering
root morphology (e.g. altered proportion of fine roots), can
influence below-ground litter quality by inducing changes in
root chemistry (Langley & Hungate, 2003), which could
influence both the rates of root decomposition and the nature
of decomposition products. Ectomycorrhizal hyphae themselves
can also directly negatively influence litter decomposition
rates, an observation known as the ‘Gadgil effect’ (after Gadgil
& Gadgil, 1971, 1975); this is probably caused by combined
nutrient and water effects (discussed in Bending, 2003).

 

3. Effects mediated by the fungal mycelium

 

Mycorrhizal fungi contribute significantly to soil microbial
biomass in many terrestrial ecosystems, often representing
a dominant fungal biomass fraction. The effects of this
abundant soil mycelium on aggregation are discussed in the
following section in greater mechanistic detail.

 

III. Effects of fungal mycelium: a mechanistic 
discussion

 

Figure 3 provides an overview of the various, in part
hypothetical, mechanisms by which the mycorrhizal fungal
mycelium may influence soil aggregation. These can be
loosely divided into biophysical, biochemical and biological
processes, but they clearly are strongly interrelated. Further
elucidating these processes and their interactions is important
for an eventual mechanistic understanding of fungal-
mediated soil aggregation, which is currently based mainly on
correlative evidence. Even though this has received relatively
little experimental attention, there is an important distinction
between the stabilization of aggregates and the formation of
aggregates in the first place (Six 

 

et al

 

., 2004). Different aspects
of the fungal mycelium may have different roles in these
respective processes, hypotheses for which are presented in
Table 1. These distinctions are important to bear in mind in
the following sections.

 

1. Biochemical mechanism: fungal mycelium products

 

Fungal products – either secreted into the environment or
contained in the hyphal walls (and then secondarily arriving
in the soil via hyphal turnover and decomposition) – have
long been implicated as an important mechanism in soil
aggregation (Tisdall & Oades, 1982). Recently, there have
been several developments concerning novel compounds and
their biochemistry, which are summarized below.

 

Glomalin and glomalin-related soil protein

 

Glomalin (Wright
& Upadhyaya, 1996) is a fungal protein (or protein class) that
is operationally quantified from soil as glomalin-related
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soil protein (GRSP; for a detailed discussion on nomenclature
and various issues of quantification, see Rillig, 2004b).
Glomalin, the actual gene product, and GRSP (the soil
organic matter pool) need to be separated in this discussion,
as it is not clear whether the soil-extraction and quantification
tools only capture material of AMF origin; in fact, recent
evidence suggests that this is not the case (Rosier 

 

et al

 

., 2006).
GRSP has received attention in the context of soil aggregation
owing to the frequently observed correlation between GRSP

and soil aggregate water stability (Wright & Upadhyaya,
1998, reviewed in Rillig, 2004b). However, evidence linking
GRSP to soil aggregation remains correlative, and the mech-
anisms involved are still unclear. Glomalin is hypothesized
to act as a ‘glue’ with hydrophobic properties, but direct
biochemical evidence for this is lacking. Contrary to original
expectations, glomalin (in a sterile hyphal culture system) has
recently been shown to be mostly tightly bound in the fungal
mycelium, rather than being secreted into the medium

Fig. 3 Overview of various mechanisms (including hypothesized processes) that are hyphal mediated and influence the formation or 
stabilization of soil at macroaggregate and microaggregate scales. Mechanisms are divided into physical, biochemical and biological processes; 
these are discussed separately in the text, and also their interactions are highlighted.
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 80% of glomalin was bound in the mycelium; Driver 

 

et al

 

.,
2005). Given that it appears to not be secreted primarily,
this implicates glomalin to have a role in the living fungus;
functionality in the soil would then be only secondarily
arising, perhaps by virtue of its relatively slow turnover rate in
the environment (e.g. Steinberg & Rillig, 2003). We recently
sequenced the putative gene for glomalin, showing homology
to a class of stress-induced proteins (broadly found amongst
fungi) with a known cellular function (V. Gadkar & M. C.
Rillig, unpublished); this provides additional evidence for
effects observed in soil arising secondarily, and may provide
clues about its mode of action in the soil. Research on
glomalin provides an exciting possibility, especially with the
molecular biology data available, to link fungal physiology
specifically with soil aggregation.

 

Mucilages, polysaccharides and other extracellular compounds

 

Soil microbes produce a variety of extracellular polymeric
compounds for several purposes, including attachment,
nutrient capture and desiccation resistance (an overview is
provided in Rillig, 2005a). For example, Chenu (1989)
demonstrated the involvement of fungus-derived polysac-
charides in soil aggregation. Even though not dealing with
a mycorrhizal fungal species, work on a specific saprobic
lignin-decomposing Basiomycete (russuloid clade) has further
highlighted the importance of fungal-derived mucilages,
including polysaccharides, in soil aggregation (Caesar-TonThat
& Cochran, 2000; Caesar-TonThat 

 

et al

 

., 2001; Caesar-
TonThat, 2002). As part of this work, polyclonal antibodies
were developed and directed at quantifying mycelium products
involved in soil aggregation. While it would be surprising if
there were not similar contributions from mycorrhizal fungi,
specific evidence is sparse. Extensive qualitative and quantitative

analysis of exudates derived from different AMF species,
produced by 

 

in vitro

 

 cultures, for example, is clearly needed to
clarify AMF roles in soil aggregation (Tisdall, 1991).

 

Hydrophobins and related proteins

 

Filamentous fungi are
known to produce hydrophobins, which are recently
discovered small proteins involved in various functions from
mycelium attachment to surfaces, alteration of biotic or
abiotic surface properties, and lowering water tension
(Wösten, 2001; Linder 

 

et al

 

., 2005). This work has
concentrated on biochemistry and molecular biology, and
very little is known, by contrast, about hydrophobins in the
environment, specifically the soil (Rillig, 2005b). Hydrophobins
have not yet been described for AMF, but are known to occur
in ectomycorrhizal fungal species (e.g. Tagu 

 

et al

 

., 2001;
Mankel 

 

et al

 

., 2002). Given their importance in helping to
attach fungal mycelium to various surfaces, and their role in
altering surface polarity (e.g. making surfaces hydrophobic), a
strong functional role in soil aggregation can be hypothesized,
but there is presently no evidence for this. Hydrophobin-like
effects can also be caused by fungal proteins not related to
hydrophobins, such as SC 15, which mediates formation of
aerial hyphae and attachment (Lugones 

 

et al

 

., 2004), or in
general by many proteins that can form amyloid-type structures
(Gebbink 

 

et al

 

., 2005). Examination of the importance of
hydrophobins and related proteins to soil aggregation processes
remains an exciting area for future research.

 

2. Biological mechanisms: mycelium-influenced 
microbiota and the soil food web

 

When thinking about the contributions of mycorrhizal fungi
to soil aggregation, it is important to realize that these fungi

Table 1 The role of fungal mycelium in aggregate formation or stabilization
 

 

Mycelium aspect Formation role Stabilization role

Overall hyphal abundance Carbon input to nucleation sites; 
degree of particle alignment

Degree of aggregate surficial cover 
(i.e. mesh size of an aggregate enveloping ‘network’)

GRSP/other protein or 
exopolymer deposition

Organic matter for binding, 
protein–mineral association 
(proteins as versatile molecules 
at mineral surfaces)

Changing aggregate surface polarity 
(e.g. hydrophobicity)

Mycelium growth rate Exertion of physical force 
(pressing particles together)

Continued delivery of plant-derived carbon 
to aggregate surface; rapidly bridging planes 
of weakness

Mycelium architecture Absorptive mycelium contributes 
to primary particle alignment and 
enmeshment

Runner hyphae provide ‘backbone’ of stabilizing 
network on aggregate surface; provision of 
tensile strength

Hyphal decomposition Provision of nucleation sites for 
microaggregate formation

Carbon input to aggregate surface/surficial 
pores (coating)

The same aspects of the fungal mycelium can be important to both formation and stabilization, but we hypothesize that there will be differences 
in the main roles of mycelium characteristics for each. Experimentally these roles will be difficult to disentangle, but it is important to note the 
conceptual distinction.
GRSP, glomalin-related soil protein. 
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do not occur in the soil in isolation, but rather interact with
numerous other organism groups, in addition to roots. Many
of these interactions have been mostly ignored in the context
of understanding the mycorrhiza-related mechanisms of soil
aggregation.

 

Microbiota

 

The microbial ecology of the AMF symbiosis is
still in its relative infancy (Hodge, 2000; Johansson 

 

et al

 

.,
2004). While it is clear that AMF influence soil microbial
communities (e.g. Andrade 

 

et al

 

., 1998a,b; Artursson &
Jansson, 2003; Artursson 

 

et al

 

., 2005a,b; Rillig 

 

et al

 

., 2006),
how and where within the soil matrix these changes are
mediated, and the significance of these changes to soil
aggregation and other processes, is poorly defined. Unlike
AMF, which exert a strong influence at the scale of
macroaggregates, bacteria and archaea would be expected to
influence the formation and stabilization of microaggregates
in a more direct manner. Thus, AMF-facilitated alteration of
prokaryotic communities may indirectly influence aggregation
processes at scales smaller than the macroaggregate. There are
several ways in which AMF communities can affect microbial
community changes, leading to the alteration of soil aggregate
distributions and turnover.

First, AMF can directly influence bacterial communities
via the deposition of mycelium products that serve as
substrates for bacterial growth. For example, Filion 

 

et al

 

. (1999)
showed that AMF exudates influence the abundance and
activities of specific fungal and bacterial species. Interestingly,
bacteria (such as 

 

Paenibacillus

 

 spp.) have recently been
isolated from AMF mycelia which appear to be important
in soil aggregation (Budi 

 

et al

 

., 1999; Bezzate 

 

et al

 

., 2000;
Hildebrandt 

 

et al

 

., 2002; Mansfeld-Giese 

 

et al

 

., 2002).
Additionally, AMF deposition products may also contain
bacteriostatic or fungistatic agents, a possibility suggested by
the results of Ravnskov 

 

et al

 

. (1999).
Second, AMF modification of rhizodeposition products,

both quantitatively and qualitatively (see the paragraph
above), results in alteration of the composition of the bacterial
community. Elegant experimental approaches to address this
aspect include split-root systems, in which a nonmycorrhizal
portion of a mycorrhizal plant is examined (e.g. Marschner &
Baumann, 2003).

Third, location within the soil matrix is thought to repre-
sent a salient control on microbial community structure and
functional attributes, and a number of studies have reported
contrasting distributions of microbial biomass, community
composition, as well as functional attributes, in different
aggregate size classes (e.g. Gupta & Germida, 1988; Hattori,
1988; Mummey et al., 2006). All AMF activities, resulting in
the alteration of soil structure, influence the nature and extent
of pore spaces available for microbial habitation. Alteration of
pore distributions would result in alteration of the salient
controls on bacterial community composition and function,
namely substrate, nutrient, water, and oxygen concentrations,

as well as predator/prey relations.Very few studies have
attempted to address experimentally the direct consequences
of AMF-altered microbial communities on soil aggregation. A
study using heat-inactivated AMF inoculum suggested that
symbiosis-influenced microbial communities (inferred from
phospholipid fatty acid patterns) could influence soil aggregate
water stability in an AMF-species dependent manner (Rillig
et al., 2005). However, in this experiment, only the microbial
communities themselves were present, and more research is
needed that specifically addresses the interactions of AMF and
microbial communities in soil aggregation. There is also
ample opportunity for research on altered physiological states
of hyphae-associated microbes (in addition to community
changes) that may be very relevant for soil aggregation. Exam-
ples include exopolysaccharide production by bacteria, which
is controlled by microenvironmental conditions that are
probably affected by mycorrhizal fungal hyphae (e.g. localized
soil moisture and nutrient concentrations).

Soil food web; microarthropods Fungi form the basis of an
important energy channel in the soil food web. The fungal
energy channel fuels populations of microarthropods and
other mesofauna (Hunt et al., 1987). Mycorrhizal fungi
contribute to this flow, even though AM fungi appear to be of
lower resource quality compared with many saprobic fungi
(Klironomos & Kendrick, 1996). Microarthropods have
important roles in organic matter processing via physical,
chemical and biological mechanisms (Lee & Foster, 1991;
Wolters, 2000). However, it is not known how interactions
between microarthropods and mycorrhizal fungal com-
munities affect soil aggregation. Potential mechanisms
include: preferential fungal grazing leading to altered fungal
communities, and hence changes in average soil-aggregation
processes; secretion of compounds by fungi (which could also
be important in soil aggregation) in response to grazing;
effects of fungi on microarthropod abundance and
community composition (via food quality effects); and
alteration of mycelium architecture in response to grazing. It
is clear that soil microarthropod interactions, and interactions
with other soil biota (earthworms, nematodes, etc.), in
relation to mycorrhizal fungal influences on soil structure,
present an exciting, yet under-explored, area of research.

3. Biophysical mechanisms: enmeshment, alignment, 
altered water relations

Enmeshment Similarly to the action of roots, albeit at a
smaller scale, hyphae serve to enmesh and entangle soil
primary particles, organic materials and small aggregates,
facilitating macroaggregate formation, while potentially
eliminating spatial constraints on microaggregate formation
(Table 1; Fig. 3). Also similar to roots, hyphal morphological
characteristics would be expected to influence strongly the
extent to which fungi stabilize soil aggregates and the scale at
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which this occurs. Hyphal morphology varies greatly amongst
mycorrhizal fungi (width, wall thickness, branching patterns,
septation). Even within single AMF species, external hyphal
morphology can be highly variable (e.g. Hart & Reader,
2005). Hyphae may also differ in tensile strength as a function
of diameter or wall thickness/chemistry, but we know of no
study measuring the tensile strength of hyphae in soil. How
these differences influence soil aggregation processes, however,
is almost completely unknown. In order for enmeshment to
be most effective in stabilizing aggregates, this cannot be a
very ephemeral phenomenon; however, enmeshment may
also enable other mechanisms to come into play secondarily.
Even though AMF hyphae as a whole may turn over quite
rapidly (5–6 d; Staddon et al., 2003), some mycelium
components, presumably runner hyphae, can persist (most C
assimilated by AMF remained in the mycelium 32 d after a
labeling event; Olsson & Johnson, 2005), and continue to
stabilize aggregates for several months after plant senescence
or death (Tisdall & Oades, 1980). This may be even more
pronounced for rhizomorphs formed by some ectomy-
corrhizal fungi; rhizomorph life spans in soil have been
estimated to average 11 months (Treseder et al., 2005), even
though it is not yet established how these structures interact
with soil aggregates.

Alignment Primary particles, such as clay, can be aligned
along growing hyphae (Tisdall, 1991; Chenu & Stotzky,
2002:). Hyphae, having been conceptualized as tunneling
machines (Wessels, 1999), can exert considerable pressure on
adjacent soil particles (Money, 1994), and might be physically
able to force organic matter and clay particles together,
leading to microaggregate formation in a manner similar to
the physical action of roots.

Water relations In analogy to the role of roots at larger spatial
scales, in inducing wet–dry cycles in the rhizosphere that are
important for aggregate formation, one could hypothesize
this to occur on the smaller scale of hyphae. This might
contribute to the increased binding of root and fungal
exudates onto clay particles. Interestingly, Querejeta et al.
(2003) have shown that in oak, nocturnal hydraulic-lift
related water transfer can occur from the plant to the
mycorrhizal (AMF and ectomycorrhizal) fungal hyphae in the
top soil layer. This, again, might induce a dampening or
exacerbation of wet–dry cycles in the mycorrhizosphere. The
relative importance of this potential mechanism is unknown.

4. Interactions of hyphal-mediated processes

The biological, biophysical and biochemical-based
mechanisms discussed above (Fig. 3) probably interact
strongly (and of course hyphae-mediated mechanisms, as a
whole, will also interact with roots and their products at
similar scales). We illustrate this with a few examples. The

hyphal-enmeshment process can be made more efficient by
hyphae possessing the means to attach strongly to the surfaces;
this can be accomplished by biochemical agents, such as
hydrophobins, and perhaps glomalin (‘sticky string bag’;
Miller & Jastrow, 2000). The alignment and grouping of
particles will be enhanced by biochemical compounds
(serving as binding agents), and perhaps also by more drastic
localized drying affected by the hyphae. Localized enrichment
of bacteria with contributions (e.g. polysaccharides) to soil
aggregation can act synergistically with other biochemical
compounds released by hyphae, or the bacterial communities
can process/modify any such biochemical compounds secreted.
Microbial communities will also mediate the decomposition
that leads to the further release of hyphal-wall bound
compounds, including glomalin (Driver et al., 2005) or
hydrophobins. Given these tight interrelations, it will be a
major challenge to the experimental soil ecologist to disentangle
the relative contributions of these hyphal-mediated processes,
especially at such small spatial scales in a dynamic system.

IV. Role of fungal diversity

Through much of the discussion thus far we have compared
a hypothetical situation of reduced or eliminated mycorrhizal
fungal activity with one where mycorrhizas occur. In addition
to its conceptual value, this is a situation that might occur
after severe soil disturbance at the outset of restoration, in
early succession, or as a consequence of adverse management
and soil losses. There is, however, another important
dimension to mycorrhizal research, namely that of the
diversity of fungal isolates and species. Changes in the
composition of the fungal community could occur as a
consequence of far lesser disturbances, and hence a situation
where different fungal communities are compared is more
common in practice than considering the complete
elimination of the symbionts. As a consequence, the functional
role of fungal diversity has received much recent research
attention (e.g. Hart & Reader, 2002; Klironomos, 2003;
Munkvold et al., 2004). Patterns of functionality are
emerging at the level of phylogenetic groupings of AMF (Hart
& Reader, 2002). A very limited number of studies have
examined the role of diversity (richness or community
composition) of fungi in soil aggregation (Schreiner &
Bethlenfalvay, 1997; Klironomos et al., 2005). It is better
established that AMF isolates can differ in their effects on soil
aggregate water stability (Schreiner et al., 1997; Piotrowski
et al., 2004; Enkhtuya & Vosatka, 2005).

The discussion of the previous sections of this article can be
integrated into the context of fungal diversity by recognizing
that fungal species (and communities) can differ in the extent
to which they promote processes at the various scales (examples
are given in Table 2). As fungal species may differentially
contribute to these functions, a mechanism exists for potential
synergistic effects. AMF have been described as ‘multifunctional’,
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from a phytocentric perspective (Newsham et al., 1995). Soil
aggregation can be viewed as another functional axis, even
though not necessarily at the level of the plant, but rather
for the soil and ecosystem. Some ‘trade-offs’ among functions
residing at the level of the fungal species are tentatively
beginning to emerge. For example, fungi that allocate carbon
preferentially to the extraradical mycelium might be more
important in nutrient uptake, whereas fungi that allocate
preferentially to the intraradical hyphae could protect the root
better against pathogens (Klironomos, 2000). However, prop-
erties related to soil aggregation have not been integrated into
this framework; they may be largely related to allocation to
the extraradical mycelium. It is important to recognize soil
aggregation as another ‘functional axis’, because otherwise a
fungus with a large investment in soil hyphae, but with
limited contribution to nutrient translocation, may be viewed
just as a parasite from a phytocentric perspective ( Johnson
et al., 1997).

Not only is it important to understand the ‘independent’
(more accurately: normalized to one host) biology of different
fungi, but it is also clear that fungal functioning depends
strongly on host plant identity (Klironomos, 2003). Recently,
Piotrowski et al. (2004) demonstrated, in an experiment using
all combinations of nine plant and five fungal species, that soil
aggregation also responded sensitively to the actual combination
of fungi and host plant. There are consequences of this from an
applied perspective (e.g. there is probably no ‘super-aggregator’
AMF species that could be used in restoration contexts), but if
soil aggregation is a primary goal, a tailored inoculum or mix
could be made for a particular crop or other target species.

V. Emerging foci, new directions and tools

1. Aggregate turnover – rare earth labeling

Largely owing to methodological constraints, most studies
pertaining to soil structure and biotic interactions view
aggregates as static entities. However, accumulating evidence
indicates that the soil structure is highly dynamic. Aggregate
turnover dynamics probably represent a primary control of
the relationships between soil organic matter occlusion and
decomposition dynamics, and a determinant of microbial
community structure and processes. Although mycorrhizal
fungi may play a central role in the regulation of aggregate
turnover, the extent to which they influence aggregate
turnover rates has yet to be experimentally determined.
Recently, a number of different tracer methods have shown
promise for analysis of aggregate formation and breakdown
at different scales (Denef et al., 2001; Plante & McGill,
2002; Plante et al., 2002; De Gryze et al., 2005). The recent
rare earth oxide-based method of De Gryze et al. (2006)
shows promise for direct determination of aggregate turnover.
This method involves a preincubation step, which allows
different rare earth oxides to be individually incorporated
into forming aggregates. Labeled soils are then fractionated
to isolate individually labeled aggregate fractions of different
sizes and are reconstituted in such a way that each aggregate
size class contains a different tracer. After a second incubation
period, in which treatments thought to influence aggregate
turnover dynamics (such as the presence of mycorrhizal
fungi) are applied, the soil is again fractionated and the

Table 2 Examples of how different species of mycorrhizal fungi or fungal diversity differentially affect processes or mechanisms related to soil 
aggregation at the three main levels discussed in this review
 

 

Level of contribution/example Reference

Plant community level
AMF community richness influences plant community composition van der Heijden et al. (1998)
AMF species differentially affect plant community composition Klironomos et al. (2000)

Individual root system level
ECM fungal species differ in their effects on root hydraulic conductivity 
(and causing different amounts of soil to adhere to roots)

Bogeat-Triboulot et al. (2004)

AMF communities differ in affecting plant water use in the field Querejeta et al. (2006)
AMF differentially influence root biomass Klironomos (2003); Piotrowski et al. (2004)
ECM richness influences root biomass Baxter & Dighton (2001)

Mycelium level
AMF differ in hyphal patterns of spread and activity in relation to host root Abbott & Robson (1985); Smith et al. (2000)
AMF differ in hyphal production Klironomos (2000); Piotrowski et al. (2004)
AMF differ in mycelium architecture (e.g. runner hyphae, absorptive hyphae,
diameter size distribution)

Drew et al. (2003); Hart & Reader (2005)

ECM species differ in mycelium architecture (e.g. cord, fan formation) Donnelly et al. (2004)
AMF differ in associated bacterial communities Rillig et al. (2005, 2006)
AMF differ in GRSP yield Wright et al. (1996)
AMF species are grazed differentially by microarthropods Klironomos et al. (1999)

AMF, arbuscular mycorrhizal fungi; ECM, ectomycorrhizal fungi; GRSP, glomalin-related soil protein.
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transfer of each label between different aggregate size classes
is measured.

2. Molecular methods

Molecular methods, based on the analysis of ribosomal
genes, provide a powerful means to examine AM species
interactions, both in relation to host plants and at multiple
scales in the soil that are relevant to aggregation processes.
However, genetic and phenotypic variability is pronounced in
at least some AMF species (Koch et al., 2004) and more
research is clearly needed to determine the degree to which
phylogeny, based on ribosomal genes, correlates with
functional attributes influencing soil aggregation and other
processes. The application of qualitative and quantitative
analysis tools to functional genes related to soil aggregation,
such as genes for glomalin and hydrophobins, is an exciting
possibility that may result in further progress, but these
analyses are still in the developmental stages.

In addition to the analysis of mycorrhizal taxonomic
relationships with processes, the use of molecular methods for
the analysis of relationships between AMF and the organisms
that AMF influence, which are potentially involved in
soil aggregation processes, is very promising. For example,
bromodeoxyuridine (BrdU) immunocapture-based methods
for determination of microorganisms exhibiting increased
growth in response to specific stimuli, including AMF presence
(Artursson & Jansson, 2003; Artursson et al., 2005, 2006)
or exudates, will probably yield important information
concerning AM/bacterial interactions in aggregation processes.

3. Feedbacks of soil structure on mycorrhizas: closing 
the loop

This review has only addressed the unidirectional chain of
causality from mycorrhizas to soil structure. However, if one
were to appreciate fully the interplay between mycorrhizas
and soil structure, the effect of aggregation on the fungus or
the colonized host cannot go unaddressed. Yet, the physical
arrangement of pores and solid particles is very difficult to
disentangle from other factors, such as organic matter content,
microbial communities, etc., that would change concurrently.
In soil biology, the approaches followed to date have involved
the use of surrogate systems that aim to model the physical
aspects of growing space, for example using glass beads of
various sizes (e.g. Parr et al., 1963). Attempts in this regard
have also included AMF (Rillig & Steinberg, 2002), with the
conclusion that AMF exhibit a strongly positive response to
conditions simulating increasingly ‘aggregated’ soil. Interestingly,
the protein glomalin (see ‘Glomalin and glomalin-related soil
protein’) was produced in greater concetrations in conditions
simulating a ‘poorly aggregated’ soil; this points to the
existence of interesting feedback between fungal growth
and soil structure that needs to be further explored

mechanistically. If mycorrhizas can, as it seems, modify their
physical growing environment to their advantage, the
relationship between mycorrhizas and soil structure could
be conceptualized as physical ecosystem engineering (Jones
et al., 1997).

VI. Conclusions

We have presented a hierarchically structured view of the role
of mycorrhizas in soil aggregation, with particular emphasis
on the contribution of the mycorrhizal fungal mycelium.

Given the importance of soil aggregation to the functioning
of ecosystems and the role played by mycorrhizas in this con-
text, it is nothing short of shocking how comparatively little
work is dedicated to this topic. For example, in a database
search (Scopus®, Elsevier B.V., the Netherlands), ≈ 20%
of all articles dealing with mycorrhizas had phosphate or
phosphorus in the title, abstract or key words, compared with
≈ 1% that mentioned soil aggregation or soil structure. Even
more drastically, only 0.8% of all articles on soil aggregation/
structure deal with mycorrhizas. Clearly, awareness of this
symbiosis for this function has to be increased all around, and
we hope to have made a contribution with this report.
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